Abstract

AbstractThe elementary reactions leading to the formation of the first carbon–carbon bond during early stages of the zeolite‐catalyzed methanol conversion into hydrocarbons were identified by combining kinetics, spectroscopy, and DFT calculations. The first intermediates containing a C−C bond are acetic acid and methyl acetate, which are formed through carbonylation of methanol or dimethyl ether even in presence of water. A series of acid‐catalyzed reactions including acetylation, decarboxylation, aldol condensation, and cracking convert those intermediates into a mixture of surface bounded hydrocarbons, the hydrocarbon pool, as well as into the first olefin leaving the catalyst. This carbonylation based mechanism has an energy barrier of 80 kJ mol−1 for the formation of the first C−C bond, in line with a broad range of experiments, and significantly lower than the barriers associated with earlier proposed mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call