Abstract

The origin, formation mechanism, and evolution of SiO2-type inclusions in Si-Mn-killed steel wires were studied by pilot trials with systematical samplings at the refining ladle, casting tundish, as-cast bloom, reheated bloom, and hot-rolled rods. It was found that the inclusions in tundish were well controlled in the low melting point region. By contrast, MnO-SiO2-Al2O3 inclusions in the as-cast bloom were with compositions located in the primary region of SiO2, and most CaO-SiO2-Al2O3-MnO inclusions lied in primary phase region of anorthite. Therefore, precipitation of SiO2 particles in MnO-SiO2-Al2O3 inclusions can be easier than in CaO-SiO2-Al2O3-MnO inclusions to form dual-phase inclusions in the as-cast bloom. Thermodynamic calculation by the software FactSage 6.4 (CRCT-ThermFact Inc., Montreal, Canada) showed that mass transfer between liquid steel and inclusions resulted in the rise of SiO2 content in inclusions from tundish to as-cast bloom and accelerated the precipitation of pure SiO2 phase in the formed MnO-SiO2-Al2O3 inclusions. As a result, the inclusions characterized by dual-phase structure of pure SiO2 in MnO-SiO2-Al2O3 matrix were observed in both as-cast and reheated blooms. Moreover, the ratio of such dual-phase SiO2-type inclusions witnessed an obvious increase from 0 to 25.4 pct before and after casting, whereas it changed little during the reheating and rolling. Therefore, it can be reasonably concluded that they were mainly formed during casting. Comparing the evolution of the inclusions composition and morphology in as-cast bloom and rolled products, a formation mechanism of the SiO2-type inclusions in wire rods was proposed, which included (1) precipitation of SiO2 in the formed MnO-SiO2-Al2O3 inclusion during casting and (2) solid-phase separation of the undeformed SiO2 precipitation from its softer MnO-SiO2-Al2O3 matrix during multipass rolling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.