Abstract

Sodalime silicate glass surface layers were doped with up to 7.0 at.% Ag + ions by ion-exchange in a AgNO 3/NaNO 3 solution at 330–355°C. Ion irradiation using either 400 and 500 keV He, 1 MeV Ne or 2 MeV Xe was then used to induce the growth of metallic nanocrystals in the ion-exchanged region. The ion fluences ranged from 1.3×10 14 ions/cm 2 to 1.1×10 17 ions/cm 2 . X-ray and electron diffraction show small Ag nanocrystals with a broad size distribution, up to a diameter of 10–15 nm, after irradiation. Optical transmission measurements show the characteristic surface plasmon resonance of metallic Ag around 420 nm. The absorption resonance sharpens and increases in strength with increasing ion irradiation fluence, indicating that both nanocrystal size and volume fraction increase with irradiation fluence. Depending on ion fluence, up to ∼15% of the ion-exchanged Ag + ions is incorporated in nanocrystals. From a systematic comparison of the degree of nanocrystal formation as a function of ion species, fluence and energy, it is concluded that nanocrystal formation is mainly caused by the atomic displacement energy loss component of the incoming ion beam; the electronic energy deposition component is less efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.