Abstract

Mirror twin grain boundary (MTB) defects, being a special type of high-symmetry one-dimensional (1D) defects in two-dimensional atomically thin transition metal dichalcogenides (TMDCs), have received considerable interest due to their unique structures and intriguing 1D properties. However, formation and distribution of MTBs in hybrid TMDC materials such as heterojunction remain scarcely studied. Herein, we investigate the spatial distribution, lattice registry and formation mechanism of MTBs in molecular beam epitaxy grown monolayer WSe2–MoSe2 lateral heterojunctions using atomic-resolution annular dark-field scanning transmission electron microscopy (ADF-STEM). MTBs manifest a much higher density in MoSe2 than in WSe2 domains with a few of them spanning coherently across the domain interface. Compositionally, a Mo-dominant rather than W-dominant configuration was observed in those MTBs located in WSe2 domains and its origin can be attributed to the preferable Mo substitution to W along the MTBs occurring at the later MoSe2 growth period. This proposed mechanism is supported by ab-initio density functional theory calculations and substitution dynamics captured by in-situ ADF-STEM. The present study deepens our understanding of MTBs in heterostructured TMDCs, which may also serve as an excellent platform for the exploration of intriguing 1D physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.