Abstract

Since challenges still exist in size control fabrication of inverted pyramids (IPs) on c-Si substrate, size difference of IPs among reported literatures still can not be explained reasonably. Here, formation mechanism of IPs from sub-micro scale to micro scale for light trapping on c-Si substrate is reported based on metal assisted chemical etching (MACE) temperature control for the first time. The formation of the IPs is realized through a mask-less Ag assisted wet chemical etching method followed by a post nanostructure rebuilding (NSR) process. It is found that the etching directions on (1 0 0) Si can be influenced by the MACE temperature due to the shrink of Ag nanoparticles at high MACE temperature, leaving behind few pore channels in the deepest region of black silicon layer as nucleation sites. Thus large IPs can be formed during the following NSR process. It is believed that the elucidation of the fundamental formation will speed up the fabrication of wafer-scale c-Si IPs for application in bulk and ultrathin c-Si solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.