Abstract

Ni51Ti49 at.% bulk was additively manufactured by laser-directed energy deposition (DED) to reveal the microstructure evolution, phase distribution, and mechanical properties. It is found that the localized remelting, reheating, and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal, a gradient distribution of Ni4Ti3 precipitates along the building direction, and preferential formation of Ni4Ti3 precipitates in the columnar zone. The austenite transformation finish temperature (A f) varies from −12.65 °C (Z = 33 mm) to 60.35 °C (Z = 10 mm), corresponding to tensile yield strength (σ 0.2) changed from 120 ± 30 MPa to 570 ± 20 MPa, and functional properties changed from shape memory effect to superelasticity at room temperature. The sample in the Z = 20.4 mm height has the best plasticity of 9.6% and the best recoverable strain of 4.2%. This work provided insights and guidelines for the spatial characterization of DEDed NiTi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.