Abstract

Edge crack formed during the hot rolling process significantly affected the quality of high-grade non-oriented electrical steel (NOES), posing substantial challenges to production. This study investigated the formation mechanism of serrated edge cracks in hot rolled strip, characterized by unusually coarse strip-like grains with typical thicknesses ranging from 0.5 to 0.8 mm and lengths ranging from 10 to 15 mm. These coarse strip-like grains evolved from abnormal columnar grains at the edges of reheating slab. During the continuous casting process, the bulge phenomenon occurred easily in high-grade NOES slabs, due to its lower yield strength at high temperatures. This bulge induced high internal stress at the slab edge, leading to abnormal growth of the columnar grains during the slab reheating process at high temperature. The orientation of coarse grains gradually changed to a rotated cube texture ({100}<011>) throughout the hot rolling process. These grains with rotated cube texture exhibited fewer slip systems and lower deformation storage energy, which is not conducive to the plastic deformation in thickness direction. Consequently, coarse grains at the slab edge deformed along TD direction and overflowed towards the lower surface of hot rolled strip, resulting in the original edge boundary enveloped by the overflowed metal to generate crack source. Finally, the serrated edge crack was formed from crack source under tensile stress during finish hot rolling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.