Abstract

The formation mechanism of bulk nanocrystalline aluminium with multiply twinned grains has been investigated by a large-scale molecular dynamics simulation. The results show that bulk nanocrystalline aluminium can be obtained directly by quenching liquid at an appropriate cooling rate window. Most nanograins do not merge with each other in the coarsening stage due to the fast cooling rate, but are separated by high-angle grain boundaries. The nanograins exhibit a narrow grain-size range with an average diameter of 6.4nm and random crystallographic orientations. These microstructure features are consistent with some of the bulk nanocrystalline alloys prepared by melt casting in experiments. The nanograins display various twinned morphologies, and they can be described by three twin elements of parallel, cross and fivefold twinning in varying amounts. The multiply twinned nanograins come from the successive formation of twin HCP planes during the layer-by-layer growth of FCC stacking blocks, and the growth kinetics plays a critical role in the grain morphology. This formation mechanism is different from that of fivefold deformation and annealing twins in the nanocrystalline metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.