Abstract

Abstract The subtle control on the self-assembly behavior of graphene oxide (GO) nanosheets is one of effective ways for the preparation of high-performance macroscopic graphene-based materials. In this work, detailed characterizations and discussion on the morphological and compositional changes on the solid products in various alcohol-water dispersions of GO under γ-ray radiation were carried out, proving the concurrent hydroxyalkylation and reduction processes of GO nanosheets in the system, which triggered the spontaneous self-assembly of the hydroxyalkylated and reduced GO nanosheets (HA-rGO). The pH and the volume ratio of alcohol to water (ϕ a/w ) are the key factors to control the self-assembly of the HA-rGO sheets. A free-standing graphene hydrogel (GH) only forms in the strong acid alcohol-water media with an appropriate ϕ a/w . After the freeze-drying of the GH, a macroporous graphene aerogel (GA) was obtained, which exhibited a high absorption performance for not only nonpolar molecules (cyclohexane and kerosene), but also most polar molecules (toluene, chloroform, glycol, etc). This work demonstrates a comprehensive self-assembly mechanism of GO nanosheets in an aqueous media under γ-ray radiation and reveals that GA produced from the reduction of GO can be used as potential super-adsorbents for not only waste oil, but also the polar alcohols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.