Abstract

The Bohai Bay basin comprises some very important and well documented subtle traps known in China, which have been the major exploration focus and have become a major petroleum play since the 1990s. However, recent exploration showed that the oil-bearing properties of some sand lens reservoirs may vary significantly and the accumulation mechanisms for these lithological subtle traps are not well understood. Based on statistical analysis of oil-bearing properties for 123 sand lens reservoirs in the Jiyang Sub-basin and combined with detailed anatomy of typical sand lens reservoirs and NMR experiments, it has been shown that the structural and sedimentary factors, hydrocarbon generation and expulsion conditions of the surrounding source rocks, as well as the petrophysical properties of sand lens reservoirs are the main controlling factors for the formation of sand lens reservoirs. The formation of a sand lens reservoir depends on the interaction between the hydrocarbon accumulation driving force and the resistance force. The driving force is made up of the differential capillary pressure between sandstones and sources rocks and the hydrocarbon diffusion force, and as well as the hydrocarbon expansion force. The resistance force is the friction resistance force for hydrocarbons and water to move through the pore throats of the sand lens. The sedimentary environment, source rock condition and sand reservoir properties can change from unfavorable to favorable depending on the combination of these factors. When these three factors all reach certain thresholds, the sand lens reservoirs may begin to be filled by hydrocarbons. When all of these conditions become favorable for the formation of sand lens reservoirs, the reservoir would have high oil saturation. This approach has been applied to evaluating the potential of petroleum accumulation in the sand lens reservoirs in the third member of the Neogene Shahejie Formation in the Jiyang Sub-basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.