Abstract
Amadori rearrangement product (ARP) is an ideal flavor precursor. The formation kinetics of ARP from glycine–ribose system, 3-deoxyribosone (3-DR) and 1-deoxyribosone (1-DR) were evaluated, and then controlled thermal reaction (CTR) coupled with vacuum dehydration was proposed to improve the ARP yield. As key factors controlling the formation of byproducts, CTR temperature and time were optimized as 100 °C, 60 min based on the formation kinetics of the ARP and deoxyribosones. Vacuum dehydration was further used to increase the ARP yield from 0.77% to 64.50%, which was improved by 82.8 times, while 3-DR and 1-DR yield increased only by 1.5 and 3.7 times, respectively. The formation of ARP was the dominant reaction during vacuum dehydration. Under optimal conditions, CTR coupled with vacuum dehydration was an effective method to control byproducts formation and improve the ARP yield simultaneously. This method may offer a potential application in flavor enhancement of light-color food.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.