Abstract

We have studied, through ab initio calculations, the stability of 60° and 120° boron nitride nanocones containing mono and multiple boron, nitrogen, and carbon vacancies. The stability of the vacancies as well as the structures reconstruction mechanism have been investigated. Our results indicate that the stability of the cones presenting such vacancies strongly depends on growth conditions. We have also found that multiple vacancies display formation energies that are comparable, and in some cases, even lower to the ones presented by monovacancies. Therefore, our results allow us to conclude that the formation energy does not depend on the vacancy size. Finally, for 120° cones, we can verify that the stability of the boron and nitrogen vacancies depends on the position where the atom has been removed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call