Abstract

All solid-state PbS quantum dot (QD)-doped glass precursor fibers avoiding crystallization during fiber-drawing process are successfully fabricated by melt-in-tube technique. By subsequent heat treatment schedule, controllable crystallization of PbS QDs can be obtained in the glass precursor fibers, contributing to broad near-infrared emissions from PbS QD-doped glass fibers. Nevertheless, we find that element-migration and volatilization of sulfur simultaneously happen during the whole fiber-drawing process, because of the huge difference between the melting temperature of core glass and the fiber-drawing temperature. Element-migration pathways along the fiber length were revealed. Such PbS QD-doped glass fiber with broadband emissions will be a potential application as gain medium of broadband fiber amplifiers and fiber lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.