Abstract

We have investigated the crystalline and optical properties of epitaxial layers of the ternary alloy Ge1−x−ySnxCy grown on a Si substrate. We achieved the formation of epitaxial Ge1−x−ySnxCy layers with a C content as high as 2% even with a high C incorporation efficiency. X-ray photoemission spectra and Raman scattering spectroscopy measurements revealed that C atoms preferentially bond with Sn atoms in the Ge matrix, which is considered to enhance C introduction into substitutional sites in Ge with local strain compensation. We also demonstrated the control of the energy bandgaps of epitaxial Ge1−x−ySnxCy layers by controlling Sn and C contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.