Abstract

This paper addresses the obstacle avoidance problem of formation control for the multi-agent systems modeled by double integrator dynamics under a directed interconnection topology. The control task is finished by a leader-follower formation scheme combined with an artificial potential field (APF) method. The leader-follower scheme is carried out by taking the desired trajectory with the desired velocity as virtual leader, while the APF method is carried out by dealing with the obstacles as the high potential points. When the obstacle avoidance tasks are finished, the artificial potential forces degrade the formation performance, so their undesired effects are treated as disturbances, which is analyzed by the robust ${{H}_{\infty~}}$ performance. Based on Lyapunov stability theory, it is proved that the proposed formation approach can realize the control objective. The result is also extended to the switching multi-agent formation. The effectiveness of the proposed formation scheme is further confirmed by simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.