Abstract

This paper deals with the problem of formation control for nonholonomic mobile robots under a cluttered environment. When the obstacles are not detected, the follower robot calculates its waypoint to track, based on the leader robot’s state. The proposed geometric obstacle avoidance control method (GOACM) guarantees that the robot avoids the static and dynamic obstacles using onboard sensors. Due to the difficulty for the robot to simultaneously get overall safe boundary of an obstacle in practice, a safe line, which is perpendicular to the obstacle surface, is used instead of the safe boundary. Since GOACM is executed to find a safe waypoint for the robot, GOACM can effectively cooperate with the formation control method. Moreover, the adaptive controllers guarantee that the trajectory and velocity tracking errors converge to zero with the consideration of the parametric uncertainties of both kinematic and dynamic models. Simulation and experiment results present that the robots effectively form and maintain formation avoiding the obstacles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call