Abstract

This paper considers the formation control problem for a network of point masses which are subject to Coulomb friction. A dynamical model including the planar discontinuous friction force is presented in the port-Hamiltonian framework. Moreover, continuous and discontinuous controllers are designed in order to achieve a desired prescribed formation. The main results are derived using tools from nonsmooth Lyapunov analysis. It is shown that the continuous static feedback controller fails to achieve the exact formation, while the discontinuous controller achieves the desired task exactly. Numerical simulations are provided to illustrate the effectiveness of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.