Abstract

We explore in detail the creation of stable localized structures in the form of localized energy distributions that arise from general initial conditions in the Peyrard-Bishop (PB) model. By means of a method based on the inverse scattering transform we study the solutions of PB model equations obtained in the form of planar waves whose amplitudes are described by the nonlinear Schrödinger equation (NLS). For localized initial conditions different from the pure N-soliton shape, we have obtained analytical results that predict and control the number, amplitude, and velocity of the NLS solitary waves. To verify the validity of these results we have carried out numerical simulations of the PB model with the use of realistic values of parameters and the initial conditions in the form of planar waves whose modulated amplitudes are given by the examples studied in the NLS. In the simulations we have found that N localized structures arise in agreement with the prediction of the analytical results obtained in the NLS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.