Abstract

AbstractThe aim of this study was to investigate the effect of low-temperature aluminizing process on the microstructure and dry sliding wear properties of Mirrax steel. Low-temperature aluminizing process was applied on Mirrax steel at 600, 650, and 700 °C for 2, 4, and 6 h. The packs for the process were prepared using pure aluminum powder as aluminum deposition source. Ammonium chloride NH4Cl and Seydisehir Al2O3 powder were used as the activator and the inert filler, respectively. Scanning electron microscope (SEM)/energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis were applied for characterization of the coating surfaces. The through-thickness variation in the layer microstructure was determined and it was found to vary between 1 µm and 45 µm which increased with higher process temperature and time. After the deposition process, the coating layer hardness increased to 1000 HVN, whereas the hardness of the matrix was 250 HVN. The wear tests were performed using a ball-on-disc tribometer under 5 N load at room temperature and 500 °C on aluminized and untreated Mirrax steel. In both room temperature and high-temperature wear tests, it was determined that the aluminizing process increased the wear resistance of Mirrax steel. Increasing aluminizing time and temperature also increased the wear resistance. The uncoated and thin-coated samples generally exhibited wear in the form of plastic deformation and adhesion related ruptures. A high degree of tribological layer was observed on the wear trace on samples with high coating thickness, especially in high-temperature tests. Therefore, the volume losses in these samples were induced by fatigue crack formation and delamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call