Abstract

Although there have been reports describing the nucleophilic reactivity of peroxomanganese(III) intermediates, as well as their conversion to high-valent oxo-bridged dimers, it remains a challenge to activate peroxomanganese(III) species for conversion to high-valent, mononuclear manganese complexes. Herein, we report the generation, characterization, and activation of a peroxomanganese(III) adduct supported by the cross-clamped, macrocyclic Me2EBC ligand (4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). This ligand is known to support high-valent, mononuclear Mn(IV) species with well-defined spectroscopic properties, which provides an opportunity to identify mononuclear Mn(IV) products from O-O bond activation of the corresponding Mn(III)-peroxo adduct. The peroxomanganese(III) intermediate, [Mn(III)(O2)(Me2EBC)](+), was prepared at low-temperature by the addition of KO2 to [Mn(II)(Cl)2(Me2EBC)] in CH2Cl2, and this complex was characterized by electronic absorption, electron paramagnetic resonance (EPR), and Mn K-edge X-ray absorption (XAS) spectroscopies. The electronic structure of the [Mn(III)(O2)(Me2EBC)](+) intermediate was examined by density functional theory (DFT) and time-dependent (TD) DFT calculations. Detailed spectroscopic investigations of the decay products of [Mn(III)(O2)(Me2EBC)](+) revealed the presence of mononuclear Mn(III)-hydroxo species or a mixture of mononuclear Mn(IV) and Mn(III)-hydroxo species. The nature of the observed decay products depended on the amount of KO2 used to generate [Mn(III)(O2)(Me2EBC)](+). The Mn(III)-hydroxo product was characterized by Mn K-edge XAS, and shifts in the pre-edge transition energies and intensities relative to [Mn(III)(O2)(Me2EBC)](+) provide a marker for differences in covalency between peroxo and nonperoxo ligands. To the best of our knowledge, this work represents the first observation of a mononuclear Mn(IV) center upon decay of a nonporphyrinoid Mn(III)-peroxo center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call