Abstract
PCDDs/DF and Co-PCB (dioxin) formations were studied with ash from a newly developed gasification and melting process for municipal solid waste. Ash samples were heated in a laboratory-scale fixed-bed reactor. Emphasis was placed on the effects of the type and composition of ash, temperatures, gas residence time, and gaseous organic precursors. Investigations using macroscopic and homologue distribution analyses led to the following conclusion. The ash from the gasification–melting process had the ability to generate dioxins in flue gas. A possible carbon source is unburned carbon in the ash samples, although this was very low (less than 0.01%). An experimental result that the level of dioxins generated from preheated fly ash obtained from a conventional incinerator was much lower than that from nonheated fly ash supported this conclusion. Dioxin concentrations obviously showed temperature dependence and peaked at 350°C. Dioxins formed in a gasification–melting process ash were readily desorbed from the surface, probably because of the low carbon content of the ash. There was no experimental evidence that gaseous organic precursors fed to the reactor generated dioxins. Therefore, an organic precursor was not essential for the formation of dioxins. A good linear relationship obtained between PCDDs/DFs and gas residence time also supported the assumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.