Abstract
Algal organic matter (AOM) has become an important precursor of disinfection byproducts (DBPs) in multiple drinking water sources. In this study, the formation of DBPs during chlorination and chloramination of AOMs from four algal species (Microcystis aeruginosa, Chlorella vulgaris, Scenedesmus obliquus, and Cyclotella sp.) under different conditions (disinfectant doses 4.0–8.0 mg/L as Cl2, pH 6.0–8.0, and bromide 0–1.0 mg/L) were simultaneously investigated. Some common and specific characteristics of DBP formation have also been identified. The yields of total DBPs from the four AOMs were 3.28 × 102–6.00 × 102 and 1.97 × 102–3.70 × 102 nmol/mg C during chlorination and chloramination, respectively. The proportions of haloacetic acids (HAAs) in total DBPs were approximately ≥50%. Increasing disinfectant doses or pH only enhanced the yields of trihalomethanes (THMs) during chlorination but enhanced the yields of THMs, HAAs and dihaloacetonitriles (DHANs) during chloramination. Increasing bromide concentrations enhanced THM yields but decreased HAA yields during chlorination and chloramination, in addition to the shift from chlorinated DBPs to brominated DBPs. The DHAN yields of the four AOMs slightly decreased with bromide levels during chlorination, whereas different AOMs showed different trends with bromide levels during chloramination. During chlorination, C. vulgaris and S. obliquus AOMs generated higher THM and DHAN yields (at 4.0–5.0 mg/L as Cl2) than the other AOMs. During chloramination, M. aeruginosa AOM generated higher THM and HAA yields than the other AOMs (at 0.1 mg/L bromide). Cyclotella sp. AOM had the highest THM-bromine substitution factors during chlorination and the highest DHAN-bromine substitution factors during both chlorination and chloramination (at 0.1 mg/L bromide).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.