Abstract

The influence of Cl− on the formation mechanism of active components is often neglected in the Fe2+/peroxydisulfate (PDS) system containing a large amount of ferryl ion reactive specie (Fe(Ⅳ)). In the current investigation, the effects of Cl− concentration on the removal of methyl phenyl sulfoxide (PMSO), the formation of methyl phenyl sulfone (PMSO2), the transformation of reactive species and oxidation products were investigated under different reaction conditions that included Fe2+ dosage, PDS dosage, and pH0. The results showed that Cl− complexing Fe2+ increased the formation path of sulfate radical (SO4·−) in the Fe2+/PDS system. Fe2+ dosage and pH0 value affected the content and morphology of Fe2+-Cl− complex, thus affecting the composition of reactive species. According to the experiment of free radical steady-state concentration, it was found that low concentration of Cl− reacted with SO4·− and increased the steady-state concentration of chlorine radicals (8.09 × 10−13 M [·Cl]ss at 1.41 mM Cl−), while at high concentration of Cl−, the contents of SO4·−, hydroxyl radical (·OH) and dichloride anion radicals (Cl2·−) increased and the contents of Fe(Ⅳ) and ·Cl decreased. ·Cl had strong reactivity with PMSO, and PMSO and its oxidation products were chlorinated under the combined action of ·Cl and Cl2·−. This work reveals the reaction mechanism and environmental application risks of Fe2+/PDS technology and lays the groundwork for subsequent industrial application of Fe2+/PDS system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.