Abstract

Abstract The layers of mixed copper chalcogenides, CuxS-CuyTe, were formed on the surface of polyamide using solutions of potassium and sodium telluropentathionates, K2TeS4O6 and Na2TeS4O6, respectively, and of telluropentathionic acid, H2TeS4O6, as precursors of chalcogens. The concentration of sorbed chalcogens increased with the increasing time of the treatment, concentration and temperature of precursor solution. CuxS-CuyTe layers are formed on the surface of polyamide after the treatment of chalcogenized polymer with Cu(II/I) salt solution. The concentration of copper in the layer increases with the increase of chalcogenization duration, concentration and the temperature of chalcogenization solution. In the surface of CuxS-CuyTe layers various copper, sulfur, tellurium and oxygen compounds (Cu2S, CuS, S8, CuxS, CuyTe, Cu(OH)2 and TeO2) were present. Chalcogenides were the major components in the layer. Chalcogenide phases — digenite, Cu1.8S, djurleite, Cu1.9375S, anilite, Cu7S4, geerite, CuS2, chalcocite, Cu2S, tetragonal Cu3.18Te2, Cu2.72Te, hexagonal Cu2Te, Cu4Te3, Cu1.80Te, Cu1.85Te2, and orthorhombic vulcanite, CuTe were identified in the layers by X-ray diffraction. Electrical sheet resistance of CuxS-CuyTe layers vary from ∼ 1.0 kW cm−2 to 4×103 kΩ cm−2. It is concluded that the formation of chalcogenide layers proceeds in the form of islands which grow into larger agglomerates. Use of the gathered data enables design and formation of the CuxS-CuyTe layers with desired conductivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.