Abstract

This paper reports the morphological events that occur when the vitelline envelope (VE) of an unfertilized egg of Xenopus laevis is transformed into the fertilization envelope (FE) surrounding the zygote. The VE is about 1 μm thick and is composed of an interlacing network of small filaments. The FE is constructed from the VE plus an electron-dense layer (fertilization layer), about 2–6 μm thick, on the outer surface of the VE, i.e., at the interface between the VE and the innermost jelly-coat layer. The fertilization layer is a stable component of the FE and is not removed by mercaptan solutions used to dejelly eggs. The events of FE formation were observed in the light and electron microscopes after dejellied eggs were activated by pricking. The FE is established when material from the cortical granules is extruded into the perivitelline space. The cortical granule material passes through the VE as the envelope lifts away from the egg surface. Some cortical granule material deposits in the interstices of the VE, but most of it forms the fertilization layer on the outer surface of the envelope. The cortical reaction is completed about 8–9 min after addition of sperm when eggs are fertilized in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call