Abstract
Design of side chains yielding highly amphiphilic conjugated polymers is proven to be an effective and general method to access lyotropic liquid crystalline mesophases, allowing greater control over crystalline morphology and improving transistor performance. The general strategy enables variations in structure and interactions that impact alignment and use of liquid crystalline alignment methods. Specifically, solvent-polymer interactions are harnessed to facilitate the formation of high quality polymer crystals in solution. Crystallinity developed in solution is then transferred to the solid state, and thin films of donor-acceptor copolymers cast from lyotropic solutions exhibit improved crystalline order in both the alkyl and π-stacking directions. Due to this improved crystallinity, transistors with active layers cast from lyotropic solutions exhibit a significant improvement in carrier mobility compared to those cast from isotropic solution. One or more embodiments of the present invention achieve a maximum carrier mobility of 0.61 cm 2 V −1 s −1 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.