Abstract

The spontaneous vesicle formation of ABABA-type amphiphilic multiblock copolymers bearing thermosensitive hydrophilic A-block in a selective solvent is studied using dissipative particle dynamics (DPD) approach. The formation process of vesicle through nucleation and growth pathway is observed by varying the temperature. The simulation results show that spherical micelle takes shape at high temperature. As temperature decreases, vesicles with small aqueous cavity appear and the cavity expands as well as the membrane thickness decreases with the temperature further decreasing. This finding is in agreement with the experimental observation. Furthermore, by continuously varying the temperature and the length of the hydrophobic block, a phase diagram is constructed, which can indicate the thermodynamically stable region for vesicles. The morphological phase diagram shows that vesicles can form in a larger parameter scope. The relationship between the hydrophilic and hydrophobic block length versus the aqueous cavity size and vesicle size are revealed. Simulation results demonstrate that the copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in A-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.