Abstract

Applying quantitative temporal analysis of products reactor measurements, we studied the reactive removal of active oxygen present on Au/TiO2 catalysts after calcination at elevated temperatures (400 °C) by CO pulses and its replenishment by O2 pulses at 80 °C, focusing on the nature of the active oxygen species. In contrast to previous studies, which mainly focused on and clarified the nature of the active oxygen species for the catalytic CO oxidation, which is reversibly formed and replenished under typical reaction conditions, this study demonstrates that directly after calcination an additional oxygen species is present. This species is also active for the CO oxidation, but it is not or only very little formed under typical reaction conditions. Implications of these results on the mechanistic understanding of the CO oxidation on Au/TiO2, in particular on the role of different active oxygen species, will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.