Abstract

In this study, electrospray ionization mass spectrometry (ESI-MS) is used to study the formation of G-quadruplex by d(GGAGGAGGAGGA) which locates at the promoter region of c-myb gene. In addition, a natural small molecule, dehydrocorydaline from a Chinese herb, is found to have the highest binding affinity with the G-quadruplex in nine natural small molecules studied, and the binding selectivity of this natural molecule toward the c-myb G-quadruplex with respect to corresponding duplex DNA is significantly higher than that of the broad-spectrum G-quadruplex-ligand TMPyP4. The result from ESI-MS indicates that the gas-phase kinetic stability of the G-quadruplex can be enhanced by binding of dehydrocorydaline. To further investigate the binding properties of dehydrocorydaline to the G-quadruplex, Autodock3 is used to calculate the docked sites and docked energies of small molecules binding to the G-quadruplex and the result shows that the docked energy of dehydrocorydaline is the biggest in the nine small molecules used, consistent with the result from ESI-MS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.