Abstract

Porous silicon/titania structures have been prepared for the first time by a sol-gel process in which a porous silicon layer was produced on single-crystal p-type silicon wafers and the titania was obtained from Ti-containing sol. The formation of TiO2, predominantly in the form of anatase, on the porous silicon surface was demonstrated by X-ray diffraction and energy dispersive X-ray analysis. The porous layers were found to contain carbon in addition to the host elements (Si, Ti, and O). Increasing the pore volume through the thermal oxidation of the porous silicon and dissolution of the oxide layer had little effect on the final Ti content, whereas the average pore diameter increased twofold, and the photoluminescence intensity in the porous silicon increased by 20 times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.