Abstract
Uniform hydrophobic cerium oxide (CeO2) nanoparticles in a cubic structure with an average size of 4.6 nm were obtained by a novel oil-water interface method in the presence of 0.40 M NaOH. Effects of reactants concentration, oxidation reaction temperature, and the type of surfactants on the final products were investigated. The products were characterized by X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, room-temperature photoluminescence spectroscopy and contact angle measurements. The products exhibited high luminescence and strong hydrophobicity. The data suggest that Ce(OH) 4− (x < 4) is a precursor complex for the formation of CeO2 nanoparticles in liquid phase and its concentration controls the size of CeO2 particles. The adsorption of the surfactant influences the formation of the hydrophobic particles of CeO2 by the oil-water interface method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.