Abstract

The fast-flow tube reaction apparatus was employed to study the halogenation of aluminum clusters. For reactions with HX (X=Cl, Br, and I), acid-etching pathways are evident, and we present findings for several reactions, whereby Al(n)X(-) generation is energetically favorable. Tandem reaction experiments allowed us to establish that for Al(n)Cl(-), Al(n)I(-), and Al(n)I(2) (-), species with n=6, 7, and 15 are particularly resistant to attack by oxygen. Further, trends in reactivity suggest that, in general, iodine incorporation leaves the aluminum clusters' electronic properties largely unperturbed. Ab initio calculations were performed to better interpret reaction mechanisms and elucidate the characteristics of the products. Lowest energy structures for Al(13)X(-) were found to feature icosahedral Al(13) units with the halogen atom located at the on-top site. The charge density of the highest occupied molecular orbital in these clusters is heavily dependent on the identity of X. The dependence of reactivity on the clusters' charge state is also discussed. In addition, we address the enhanced stability of Al(13)I(-) and Al(13)I(2) (-), arguing that the superhalogen behavior of Al(13) in these clusters can provide unique opportunities for the synthesis of novel materials with saltlike structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.