Abstract

Starting from observation of the geometric features of formation and propagation of cracks in cycled single crystals of copper a model was developed for fatigue cracking. The only and experimentally well established assumption of the model is that the slip during cyclic deformation tends to be coarse. By the cooperation of stress concentrations at the slip steps and the hardening of slip planes activated locally two slip systems (with different slip planes and Burgers vectors) are activated alternatively so that a crack develops from the slip step. It propagates without monotonically increasing the hardening at the crack tip. The coarse slip produces sharp slip steps at the surface for crack formation and prohibits crack blunting during propagation. In contrast to other models the one described can show how the irreversible process of crack formation and propagation can take place despite completely symmetrical push-pull stresses. The whole crack is formed merely by the motion of dislocations present in the material so that but comparatively small stresses are needed. As, moreover, no thermally activated processes are necessary, fatigue at 4·2°K can be explained too. The strong dependence of fatigue on the state of the surface can also be accounted for since the cracks form at the surface steps. Materials which tend to coarse slip even in unidirectional tests are expected to fatigue easily. This is corroborated experimentally. Finally, many details of crack geometry can be explained in terms of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call