Abstract

The abundant methane hydrates stored in marine sediments have been widely evaluated as a potential energy source. Understanding the gas and water production characteristics of methane hydrate-bearing marine sediments is critical for hydrates commercial exploitation. In this study, confining pressure was applied to simulate a sub-seafloor environment. Methane was repeatedly injected into cores to remold hydrate-bearing marine sediments with different hydrate saturation. The hydrate saturation increased from 10.6% to 21.6% as the water content increased from 8.9% to 22.2%. The results indicate that the higher the core water content, the greater the hydrate saturation and the longer the hydrate dissociation time. The gas production characteristics of hydrate-bearing sediments were severely affected by water and hydrates in pores. The results indicated that some hydrates and free gas were easily trapped by the surrounding soil, meaning that the hydrates were isolated and disconnected with the pore channels under confining pressure during depressurization. Thus, a second depressurization was conducted to achieve further gas production. For cores with different water contents, their water conversion percentage is approximately 20%. When the water content exceeded 16.7%, the water production was observed. The results of this study are meaningful for further related research and field production of marine hydrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call