Abstract

Laboratory and field collected sediments were x-rayed to document the array of biogenic sedimentary structures produced by the burrowing and feeding behavior of six species of marine intertidal annelid (Glycera robusta, Nephtys caecoides, Pectinaria californiensis, Notomastus magnus, Eupolymnia crescentis, and Cirriformia spirabrancha). Polychaete burrows were found to vary greatly in structural complexity with both errant (N. magnus) and relatively sessile forms (C. spirabrancha) producing a variety of biogenic structures. Sediment mixing by the tentacle-feeding polychaete C. spirabrancha was observed by sequentially x-raying an experimental field enclosure stratified with an opaque substance. The experiment demonstrates that tentacle-feeding polychaetes can influence the topography of the sediment-water interface and transport substantial amounts of near surface material downward.Criteria by which fossil biogenic sedimentary structures, presumably produced by soft-bodied organisms, can be assigned a feeding function have been advanced by Walker (1972). Some of the assumptions inherent in feeding function analysis were applied, with varying degrees of success, to the biogenic structures of modern soft-sediment polychaetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call