Abstract

Principles of formation, electronic absorption and fluorescence spectra are reported for self-organized pentameric arrays of tetrapyrrolic macrocycles. In these arrays two molecules of Zn-porphyrin dimers, Zn(II 1,4-bis[5-(10,15,20-tri- p-hexylphenylporphyrinyl)]-benzene ((ZnHTPP) 2) are bound via one molecule of a tetrapyridyl-substituted free base of porphyrin or tetrahydroporphyrin. The process of self-assembly is based on the twofold coordination of the central Zn ions in the dimer with the nitrogen atoms of the pyridyl rings in the free base which is strong enough to make the complexes stable at room temperature. The formation of the complexes can be followed by changes in the absorption bands of (ZnHTPP) 2 characteristic of an axial extra-ligation of Zn-porphyrins with pyridine or pyridyl-substituted compounds. The spectral behavior of the free bases in the pentads is determined by a non-planar distortion of their macrocycle caused by the two-point binding with the dimers. The fluorescence intensity of the Zn-porphyrin dimer decreases essentially upon complexation with the tetrapyridyl-substituted free bases. This quenching effect is assigned to a singlet-singlet energy transfer from the complexed Zn-porphyrin dimers to the free base subunit in the pentad.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.