Abstract

Minimizing friction and wear at a rubbing interface continues to be a challenge and has resulted in the recent surge toward the use of coatings such as diamond-like carbon (DLC) on machine components. The problem with the coating approach is the limitation of coating wear life. Here, we report a lubrication approach in which lubricious, wear-protective carbon-containing tribofilms can be self-generated and replenishable, without any surface pretreatment. Such carbon-containing films were formed under modest sliding conditions in a lubricant consisting of cyclopropanecarboxylic acid as an additive dissolved in polyalphaolefin base oil. These tribofilms show the same Raman D and G signatures that have been interpreted to be due to the presence of graphite- or DLC films. Our experimental measurements and reactive molecular dynamics simulations demonstrate that these tribofilms are in fact high-molecular weight hydrocarbons acting as a solid lubricant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.