Abstract

Hematite, with ferrihydrite as the common precursor, is the most stable iron oxide in soils and sediments and has many applications in environmental systems. As a common reducing agent in soils, tartaric acid (L-TA) can reduce Fe3+ to Fe2+ and template the formation of hematite from ferrihydrite. Here, the formation of hematite in the presence of L-TA was investigated under different L-TA concentrations, initial suspension pH, and aging time. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high- resolution transmission electron microscopy (HRTEM). Both the transformation process and the particle morphology of hematite were affected by the initial suspension pHi at which the L-TA was added to the suspension. Optimal pHi values at a L-TA/Fe(III) molar ratio of 1.0% and an aging time of 10 h at 100 °C were pHi 7 and pHi 11. At pHi 7, the optimal L-TA/Fe(III) molar ratio for the transformation was 1.0% and aging at 100 °C was completed after about 20 h. The ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call