Abstract

Although planktonic marine fish larvae are often distributed in aggregations, the role of behavioral responses to environmental factors in these aggregations is not well understood. This work examines, under laboratory conditions, the influence of visual and chemical stimuli in the formation and maintenance of aggregations in walleye pollock,Theragra chalcogramma, larvae. Larvae were exposed to a horizontal gradient of light (visual stimulus), prey scent (chemical stimuli: squid/copepod and rotifer) or prey density (visual & chemical stimuli: rotifers). While larvae did not respond to prey scent, they did respond to a gradient of light or prey, which resulted in the formation and maintenance of aggregations. Larvae moved into and remained in a zone of higher light intensity (0.56 versus 0.01 μmol photons m-2 s-1). Once encountering a patch of prey, larvae remained aggregated within the patch to feed. In nature, movement of walleye pollock larvae in response to selected environmental factors (e.g., gravity, light, temperature, turbulence) may serendipitously bring them into contact with prey patches, where they then could remain to feed as long as light intensity remained at or above levels necessary for feeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call