Abstract

Solvent shifting is a process in which a non-solvent is added to a solvent/solute mixture and extracts the solvent. The solvent and the non-solvent are miscible. Because of solution supersaturation, a portion of the solute transforms to droplets. In this paper, based on this process, we present an investigation on droplet formation and their radial motion in a microfluidic device in which a jet is injected in a co-flowing liquid stream. Thanks to the laminar flow, the microfluidic setup enables studying diffusion mass transfer in radial direction and obtaining well-defined concentration distributions. Such profiles together with the ternary phase diagram give detailed information about the conditions for droplet formation as well as their radial migration in the channel. The ternary system is composed of ethanol (solvent), de-ionized water (non-solvent), and divinylbenzene (solute). We employ analytical/numerical solutions of the diffusion equation to obtain concentration profiles of the components. We show that in the system under study droplets are formed in a region of the phase diagram between the binodal and the spinodal, i.e., via a thermally activated process. The droplets are driven to the channel centerline by the solutal Marangoni effect but are not able to significantly penetrate into the single-phase region, where they get rapidly dissolved. Therefore, the radial motion of the binodal surface carries the droplets to the centerline where they get collected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call