Abstract

Granular flow down a rough incline is a typical model case for geophysical mass flows. For insufficiently rough inclines, a strongly sheared basal layer can form below the less agitated bulk layer due to basal slip and particle collisions. However, the thickness and kinematic characteristics of the basal layer has not been well understood. Here, discrete element method (DEM) simulations are carried out to investigate the effects of base roughness on various kinematics profiles (i.e., velocity, shear rate and granular temperature) of the basal layer. The base roughness is varied systematically from geometrically smooth (i.e., a flat frictional plane) to moderately and sufficiently rough (formed by a layer of stationary particles). The base roughness is quantified by a dimensionless parameter, Ra, varying from 0 to 1, which has previously been found to control the transition from slip to non-slip regimes at around Ra=0.6. The present results show that, when basal slip occurs, the velocity profile deviates from the standard Bagnold’s profile, with an apparent basal slip and a basal layer where particles are highly agitated. The thickness of the basal layer, the slip velocity, and the level of velocity fluctuations (granular temperature) in the basal layer are all controlled by Ra. Intriguingly, the thickness of the basal layer, which is about several particle diameters, is insignificantly affected by other simulation conditions including the flow thickness and slope angle. Finally, the velocity profile is accurately described by a semi-empirical function based on the strong association between granular temperature and shear rate. Future work will focus on the rheology of the basal layer, which will potentially lead to more accurate predictions of geophysical granular flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call