Abstract

Preparation of spherical fine protein microparticles by the lyophilization of a protein-poly(ethylene glycol) (PEG) aqueous mixture was investigated. The main objective was to establish a method for preparing protein microparticles suitable for pharmaceutical production. Aqueous solutions containing bovine serum albumin (BSA) and PEG at various mixing ratios were freeze-dried. The lyophilizates were dispersed in methylene chloride and subjected to particle size analysis. Analogous studies were performed using several model proteins. A phase diagram of the PEG-BSA aqueous system was obtained by the titration method. The particle size of BSA decreased as the PEG-BSA ratio increased. A bending point was observed in this relationship, at which the PEG-BSA ratio coincided with that of the critical point on the phase diagram of the PEG-BSA system. These results were explained by the freezing-induced condensation, followed by phase separation in the PEG-BSA system. Spherical fine protein microparticles were successfully obtained at high yield and without any activity loss under optimum conditions. This new technology could be applicable to proteins with a wide range of molecular weights, and is expected to be developed for dry powder inhalations or long-term sustained release microsphere formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.