Abstract
Carbide nano-precipitates are commonly used to improve mechanical properties of steel. It has been experimentally observed that TiC, NbC, and VC carbide precipitates initially form as ‘plate-like’ particles oriented in the {100} planes of the ferrite lattice. These platelets share similarities with Guinier-Preston zones in Al-Cu alloys.The clustering of group IV and V transition metal atoms (M = Ti, Zr, Hf, V, Nb, Ta) in ferrite is studied using density functional theory. It is deduced that the transition metal carbides all form in a similar way. Furthermore, the transition from an initial M–C cluster to a NaCl-structured platelet to a NaCl-structured precipitate is examined through atomistic simulations using Modified Embedded Atom Method potentials. A route is established along which transition metal carbides form and transform into precipitates that possess the Baker-Nutting orientation relation with the ferrite matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.