Abstract
The nature of the first-formed oxide on 20% Cr/25% Ni/Nb stabilized steel during exposure to CO2 at high and low temperatures has been determined by surface analytical techniques. These results together with a consideration of gas/solid interactions show that the oxide produced may be determined by kinetics or thermodynamic factors, and a diagram is presented to show that rhombohedral Cr2O3 or spinel may be the oxide first formed. Under most standard conditions, a mixed spinel oxide is formed initially, and the subsequent growth of a duplex oxide is analyzed in terms of a solid-state reaction in which the spinel oxide is reduced to Cr2O3 at the metal/oxide interface. Diffusion control of growth by either spinel or Cr2O3 is incorporated in new equations describing the kinetics of oxidation, and weight-gain predictions are tested against experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.