Abstract

The deformation and instability of a low-density spherical bubble induced by an incident and its reflected shock waves are studied by using the large eddy simulation method. The computational model is firstly validated by experimental results from the literature and is further used to examine the effect of incident shock wave strength on the formations and three-dimensional evolutions of the vortex rings. For the weak shock wave case (Ma = 1.24), the baroclinic effect induced by the reflected shock wave is the key mechanism for the formation of new vortex rings. The vortex rings not only move due to the self-induced effect and the flow field velocity, but also generate azimuthal instability due to the pressure disturbance. For the strong shock wave case (Ma = 2.2), a boundary layer is formed adjacent to the end wall owing to the approach of vortex ring, and unsteady separation of the boundary layer near the wall results in the ejection and formation of new vortex rings. These vortex rings interact in the vicinity of the end wall and finally collapse to a complicated vortex structure via azimuthal instability. For both shock wave strength cases, the evolutions of vortex rings due to the instability lead to the formation of the complicated structure dominated by the small-scale streamwise vortices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call