Abstract

It has been suggested that HD 200964 is the first exoplanetary system with two Jovian planets evolving in the 4/3 mean- motion resonance. Previous scenarios to simulate the formation of two giant planets in the stable 4/3 resonance configuration have failed. Moreover, the orbital parameters available in the literature point out an unstable configuration of the planetary pair. The purpose of this paper is i) to determine the orbits of the planets from the RV measurements and update the value of the stellar mass (1.57 M), ii) to analyse the stability of the planetary evolution in the vicinity and inside the 4/3 MMR, and iii) to elaborate a possible scenario for the formation of systems in the 4/3 MMR. The results of the formation simulations are able to very closely reproduce the 4/3 resonant dynamics of the best-fit config- uration obtained in this paper. Moreover, the confidence interval of the fit matches well with the very narrow stable region of the 4/3 mean-motion resonance. The formation process of the HD 200964 system is very sensitive to the planetary masses and protoplanetary disk parameters. Only a thin, flat disk allows the embryo-sized planets to reach the 4/3 resonant configuration. The stable evolution of the resonant planets is also sensitive to the mass of the central star, because of overlapping high-order resonances inside the 4/3 resonance. Regardless of the very narrow domain of stable motion, the confidence interval of our fit closely matches the stability area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.