Abstract
Numerical simulation of an oblique detonation induced by a wedge is performed to investigate the formation and evolution of the oblique cellular detonation structure and the quantitative comparison of the cellular structure of a normal and an oblique detonation. The compressible reactive Euler equations are solved using the seventh-order WENO scheme on an adaptive mesh based on the open source program Adaptive Mesh Refinement in Object-oriented C++ (AMROC). The numerical results show that there are two sets of transverse waves, the left-running transverse waves (LRTW) and the right-running transverse waves (RRTW), which form the oblique cellular detonation structure. Although both sets of transverse waves are convected downstream, they propagate at almost the same relative velocity in the opposite direction. The LRTWs start in the transition zone because of the detonation instability. However, the RRTWs form due to the interaction between the deformed detonation front and the reflected shock wave from the wedge. For the same degree of overdrive, numerical simulations reveal that the characteristic cell size of an oblique detonation is almost the same as that of a normal detonation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.