Abstract
The formation and structure of tetrahydrothiophene (THT) self-assembled monolayers (SAMs) on Au(111) were examined using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). XPS measurements revealed that THT molecules, containing endo-sulfur aliphatic rings, can form chemisorbed SAMs, in contrast with the formation of physisorbed SAMs by dialkyl monosulfide, suggesting that the adsorption ability of monosulfide compounds on gold strongly depends on the structure of tail groups, such as an aliphatic ring or two alkyl groups attached to sulfur head groups. In addition, high-resolution STM imaging revealed, for the first time, that the adsorption of THT molecules on Au(111) results in long-range, two-dimensional, ordered SAMs, having a (3 × 2√3) superlattice with many unique structural defects and a few vacancy islands. It is suggested that the unique surface structures of THT SAMs on Au(111) are mainly due to the weak van der Waals interactions between THT rings, as well as a dyn...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.