Abstract

In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal–ligand phosphorylated peptide complexes [CuII(terpy)pM]·2+ and [CoIII(salen)pM]·+ [pM: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N,N '-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations (pM·+) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M – H3PO4]·+ species through phosphate ester bond cleavage. The CID spectra of the pM·+ species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain. The extent of neutral H3PO4 loss was influenced by the peptide sequence and the initial sites of the charge and radical. A preliminary density functional theory study, at the B3LYP 6-311++G(d,p) level of theory, of the neutral loss of H3PO4 from a prototypical model—N-acetylphosphorylserine methylamide—revealed several factors governing the elimination of neutral phosphoryl groups through charge- and radical-induced mechanisms.Electronic supplementary materialThe online version of this article (doi:10.1007/s13361-012-0479-7) contains supplementary material, which is available to authorized users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.