Abstract

Brominated disinfection byproducts (Br-DBPs) are generally more cytotoxic and genotoxic than their chlorinated analogues. A great portion of total organic bromine in chlorinated drinking water is still unknown and may be ascribed to polar Br-DBPs. In this work, a novel approach, precursor ion scan using ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, was adopted and further developed for selective detection and identification of polar Br-DBPs, which made it possible to reveal the whole picture of the formation and decomposition of polar Br-DBPs during chlorination. Simulated drinking water samples with chlorine contact times from 1 min to 7 d were analyzed. Many new polar aromatic and unsaturated aliphatic Br-DBPs were detected and tentatively proposed with chemical structures, of which 2,4,6-tribromophenol, 3,5-dibromo-4-hydroxybenzoic acid, 2,6-dibromo-1,4-hydroquinone, and 3,3-dibromopropenoic acid were confirmed or identified with authentic standards. It was found that various polar Br-DBPs formed and reached the maximum levels at different chlorine contact times; high molecular weight Br-DBPs might undergo decomposition to relatively low molecular weight Br-DBPs or even finally to haloacetic acids and trihalomethanes. The decomposition of newly detected intermediate Br-DBPs (including molecular ion cluster m/z 345/347/349/351, 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoic acid) during chlorination was investigated in detail. The "black box" from the input of "humic substances + bromide + chlorine" through the output of "haloacetic acids + trihalomethanes" was opened to a significant extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.